Stratospheric ozone depletion.
نویسنده
چکیده
Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.
منابع مشابه
Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off be...
متن کاملComparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings
Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007) (RW07), Cionni et al. (2011) (SPARC), and Bodeker et al. (2013) ...
متن کاملHas the ozone hole contributed to increased Antarctic sea ice extent?
[1] Since the 1970s sea ice extent has decreased dramatically in the Northern Hemisphere and increased slightly in the Southern Hemisphere, a difference that is potentially explained by ozone depletion in the Southern Hemisphere stratosphere. In this study we consider the impact of stratospheric ozone depletion on Antarctic sea ice extent using a climate model forced with observed stratospheric...
متن کاملThree-dimensional simulations of springtime dissipation of the Antarctic ozone hole*
The substantial springtime loss in ozone amount in the lower Antarctic polar stratosphere has prompted extensive studies of ozone depletion over the last two decades (World Meteorological Organization (WMO) 1992, 1995, 1999). Due to the important role ozone plays in absorbing harmful ultraviolet radiation, the ozone decline in mid-latitudes and dramatic ozone depletion over Antarctica may have ...
متن کاملCould stratospheric ozone depletion lead to enhanced aquatic primary production in the polar regions?
We study the effects of ozone depletion on primary production in ice-covered and open polar waters using a spectral radiative transfer model combined with a parameterization of the inhibition of marine photosynthesis by ultraviolet radiation. We find that ozone depletion might not have a negative influence on the aquatic algal community at high latitudes but instead could enhance primary produc...
متن کاملStratospheric Ozone Depletion: a Review of Concepts and History
Stratospheric ozone depletion through catalytic chemistry involving man-made chlorofluorocarbons is an area of focus in the study of geophysics and one of the global environmental issues of the twentieth century. This review presents a brief history of the science of ozone depletion and describes a conceptual framework to explain the key processes involved, with a focus on chemistry. Observatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 361 1469 شماره
صفحات -
تاریخ انتشار 2006